A New Second Order Numerical Scheme for Solving Forward Backward Stochastic Differential Equations with Jumps

نویسندگان

  • Hongqiang Zhou
  • Yang Li
  • Zhe Wang
چکیده

In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator ( ) ( ) ( ) t t t t f r t x y h t z g t , , = + + Γ linearly depending on t z . And we theoretically prove that the convergence rates of them are of second order for solving t y and of first order for solving t z and t Γ in p L norm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of Talk: High accurate schemes for FBSDEs with jumps

In this talk, we will introduce high accurate numerical schemes for solving forward backward stochastic differential equations (FBSDEs) with jumps. In these schemes, the simplest Euler scheme with only one jump is used to solve the forward stochastic differential equation (SDE), and multistep schemes is used to solve the backward stochastic differential equation (BSDE) with high convergence rat...

متن کامل

AMultistep Scheme for Decoupled Forward-Backward Stochastic Differential Equations

Abstract. Upon a set of backward orthogonal polynomials, we propose a novel multi-step numerical scheme for solving the decoupled forward-backward stochastic differential equations (FBSDEs). Under Lipschtiz conditions on the coefficients of the FBSDEs, we first get a general error estimate result which implies zero-stability of the proposed scheme, and then we further prove that the convergence...

متن کامل

Simulating Stochastic Inertial Manifolds by a Backward-Forward Approach

A numerical approach for the approximation of inertial manifolds of stochastic evolutionary equations with multiplicative noise is presented and illustrated. After splitting the stochastic evolutionary equations into a backward and a forward part, a numerical scheme is devised for solving this backward-forward stochastic system, and an ensemble of graphs representing the inertial manifold is co...

متن کامل

Application of the block backward differential formula for numerical solution of Volterra integro-differential equations

In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...

متن کامل

A new numerical scheme for solving systems of integro-differential equations

This paper has been devoted to apply the Reconstruction of Variational Iteration Method (RVIM) to handle the systems of integro-differential equations. RVIM has been induced with Laplace transform from the variational iteration method (VIM) which was developed from the Inokuti method. Actually, RVIM overcome to shortcoming of VIM method to determine the Lagrange multiplier. So that, RVIM method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016